May 12, 2014 Time: 90 minutes

MATHEMATICS 218

Final Examination

NAME -----ID# -----

Spring 2013-14

Circle your section number:

Sabine El Khoury			Michella Bou Eid			Monique Azar			Hazar Abu-Khuzam		
1	2	3	4	5	6	7	8	9	10	11	12
9 M	2 F	8 M	1 W	2 F	1 M	3:30 T	5 T	12:30 T	1 F	11 M	11 F

PROBLEM GRADE

PART I

1 ----- /16

2 ----- / 18

3 ----- / 10

4. ----- / 12

5. ----- / 7

PART II

6	7	8	9	10	11	12
a	a	a	a	a	a	a
b	b	b	b	b	b	b
С	c	c	С	c	c	С
d	d	d	d	d	d	d

6-12 ----- / 21

PART III

a	b	c	d	e	f	g	h

13 ----- / 16

TOTAL ----- /100

<u>PART I.</u> Answer each of the following problems in the space provided for each problem (Problem 1 to Problem 5).

1. Let
$$A = \begin{pmatrix} 5 & 1 & 0 \\ 1 & 5 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$

(a) Find the eigenvalues and a basis for each eigenspace of A.

[10 points]

1(b) Show that A is diagonalizable. Find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP=D$. (Do not verify)

[6 points]

- 2. Let $T: P_2 \to P_2$ be the linear transformation defined by T(p(x)) = xp'(x).
 - (a) Find the matrix $A = [T]_{\beta}$ of T relative to the standard ordered basis $\beta = \{1, x, x^2\}$ of P_2 .

[6 points]

(b) Find the matrix $B = [T]_{\beta}$ of T relative to the ordered basis $\beta' = \{1 + x^2, 2x, 1\}$ of P_2 . [6 points]

(c) Find the transition matrix $P=[I]^{\beta}_{\beta}$ from β ' to β such that $B=P^{-1}AP$ (Do not verify). [6 points]

3. Prove that an orthogonal set of nonzero vectors in an inner product space V is linearly independent.

[10 points]

4. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by

$$T\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a+b+c \\ 0 \\ 0 \end{pmatrix}.$$

Find a basis for the null space N(T) and use the Gram-Schmidt process to construct an orthonormal basis for N(T), with the usual dot product.

[12 points]

5. Let T: $R^3 \to R^4$ and S: $R^4 \to R^2$ be two linear transformations such that the composition SoT =0. Show that if S is onto then T cannot be one-to-one.

[7 points]

<u>PART II.</u> Circle the correct answer for each of the following problems (Problem 6 to Problem 12). <u>IN THE TABLE IN THE FRONT PAGE</u> [3 points for each correct answer]

6. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map defined by

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3x + 2y \\ -x \\ 0 \end{pmatrix}$$

Then dim (Range T) is:

- a. 3
- b. 2
- c.
- d. none of the above.

[3 points]

- 7. Let S be the subspace defined by S={M is a 3x3 skew-symmetric matrix with the sum of the entries of each row is zero}. Then dim S=
- a. 1
- b. 2
- c. 3
- d. none of the above.

[3 points]

- **8.** If T: $\mathbb{R}^2 \to \mathbb{R}$ is a linear transformation such that $T(\mathbf{v}) \neq 0$ for some \mathbf{v} in \mathbb{R}^2 , then
- a. T is one-to-one.
- b. T is onto.
- c. Dim (Nullspace T)=0.
- d. none of the above.

[3 points]

9. Let
$$A = \begin{pmatrix} 2 & 2 \\ 1 & 2 \\ 1 & 1 \end{pmatrix}$$
 and $b = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$. Then the least squares solution to $Ax = b$ is:

a.
$$\hat{x} = \begin{pmatrix} 3/5 \\ 6/5 \end{pmatrix}$$

b.
$$\hat{x} = \begin{pmatrix} -6/5 \\ 3/5 \end{pmatrix}$$

c.
$$\hat{x} = \begin{pmatrix} -3/5 \\ 6/5 \end{pmatrix}$$

d. None of the above

[3 points]

10. Let U be the subspace of R^3 defined by

$$U = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in R^3 \mid x - 2y + 3z = 0 \right\}. \text{ Then } \dim U^{\perp} = 0$$

- a. 3
- b. 1
- c. 2
- d. none of the above

[3 points]

11. Let
$$A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 8 \\ 0 & 1 & 3 \end{pmatrix}$$
. Then:

- a. A is diagonalizable.
- b. A is not invertible.
- c. The eigenspace corresponding to the eigenvalue $\lambda=1$ has dimension 2.
- d. None of the above.

[3 points]

- 12. Let T: $V \rightarrow V$ be a linear transformation with dim V = n such that T is <u>onto</u>. Which one of the following statements is <u>FALSE</u>:
- a. T is an isomorphism
- b. If { $v_1, v_2, ..., v_n$ } is linearly independent in V, then { $T(v_1), T(v_2), ..., T(v_n)$ } is linearly independent in V.
- c. dim(RangeT)=n
- d. none of the above.

[3 points]

<u>PART III.</u> Answer TRUE or FALSE only <u>IN THE TABLE IN THE FRONT PAGE</u> (2 points for each correct answer)

- a. ---- If A is a 3×3 matrix such that $A^2=0$, then rank $A \neq 3$.
- b. ---- Let V be a finite dimensional vector space and let W be a subspace of V. If dim W= dim V, then W=V.
- c. ---- If A is a 2×5 matrix, then dim (Column space of A) ≤ 2
- d. ---- Let V be a finite dimensional inner product space and let W be a subspace of V. Then the orthogonal complement of W^{\perp} is equal to W.
- e. ----- Let V be a finite-dimensional vector space and let $T: V \rightarrow V$ be a linear transformation. If T is one-to-one, then T is onto.
- f. ---- The matrices $A = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} -2 & 1 \\ 4 & 3 \end{pmatrix}$ are similar.
- g. --- Let T: $\mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation such that

$$T\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \text{ and } T\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$$

Then
$$T \begin{pmatrix} 5 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 7 \\ -2 \end{pmatrix}$$
.

h. ---- The set of all 2×2 noninvertible matrices is a subspace of $M_{2\times 2}$.

[16 points].

10

